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Preface

Some results on perfect codes and related topics are discussed. The
main methods to construct perfect codes such as the switching method
and the concatenation approach and their implementations to solve
some important problems are analyzed. The solution of ranks and
kernels problem, the lower and upper bound of the automorphism group
order of a perfect code, spectral properties, and isometries of perfect
codes and codes close to them by close-packed properties are considered.

The topic of perfect codes is one of the most fascinating topics in
the theory of error-correcting codes. The class of perfect binary codes
is very complicated, large and intensively studied by many researches,
see the list of references. The investigation of nontrivial properties of
perfect codes is important both from coding point of view (for the solu-
tion of the classification problem for such codes) and for combinatorics,
graph theory, group theory, geometry. Many constructions and proper-
ties, for example, for perfect binary codes can be applied for codes with
different parameters (lengths, sizes, distances) or for nonbinary cases.

There are several surveys devoted to perfect codes, see [24, 75, 77,
76, 12]. We discuss in these lectures some results on perfect binary codes
and some related correspondence between perfect codes and Steiner
triple systems or codes with other parameters (length or distance).

The lectures are organized as follows: first we give necessary def-
initions and notations (Chapter 1), then we consider the Hamming
code and its properties (Chapter 2), the well known Vasil’ev codes and
their properties (Chapter 3), and some properties and constructions
of Steiner triple systems (Chapter 4). Properties of linear codes are
considered in Chapter 5, for the concatenation approach and its imple-
mentations to get solutions of some important problems, see Chapter
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6, the main methods to construct perfect codes such as the switching
method and its implementations to establish some interesting nontrivial
properties of perfect codes are presented in Chapter 7, and in Chapter 8
we discuss several spectral properties of perfect codes (see Sections 8.1
and 8.3), upper bound on the number of perfect binary codes (Section
8.2), automorphism groups of perfect codes (Section 8.4), the solution
of ranks and kernels problem (Section 8.5), and isometries of perfect
codes and codes close to them by close-packed properties (Section 8.6).
We discuss some results in more details, others we only concern. It
should be noted that the lecture notes are organized in such a way that
in the first reading each chapter can be considered independently from
other chapters taking only into account Chapter 1.
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Chapter 1

Necessary definitions

A binary code C of length n is a subset of the n-dimensional metric
space En over the Galois field GF (2) with the Hamming metric.

The Hamming distance d(x, y) between vectors x, y ∈ En is a num-
ber of coordinates in which x and y differ.

The Hamming weight of x ∈ En is defined as wt(x) = d(x,0n),
where 0n is the all-zero vector of length n. Let 1n be the all-one vector
of length n.
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000
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1111

1110 1101 1011 0111

1100 1010 0110 1001 0101 0011

1000 0100 0010 0001

0000

E4

Figure 1.1: 3-dimensional, 4-dimensional cubes.

We put all vectors of the same weight i, on the i-th level of the
n-cube En, i ∈ {0, 1, 2, . . . , n}, see Figures 1.1 and 1.2.

A code distance is defined as d = min d(x, y) for any two different
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2 Necessary definitions

En−1 × 1

i-th level

En−1 × 0

En

Figure 1.2: n-dimensional cube.

codewords x, y from the code C.
Two codes C,C ′ ⊂ En are said to be isomorphic if there exists a

permutation π such that C ′ = π(C) = {π(x) : x ∈ C}.
Codes C, C ′ ⊂ En are equivalent if there exists a vector b ∈ En and

a permutation π such that C ′ = b + π(C) = {b + π(x) : x ∈ C}.
A neighborhood K(C) of a set C in En is the union of spheres of

radius 1 with centers at the vectors of C.
A code C is perfect if K(C) = En and K(x) ∩ K(y) = ∅ for any

x, y ∈ C. This definition gives us a close-packed property: the whole
space En is partitioned by spheres of radius one with centers in the
codewords. The definition is equivalent to the following: a code C is
perfect if for any vector z ∈ En there exists exactly one vector x ∈ C
such that d(z, x) ≤ 1.

In [92, 93, 82] the following important theorem is proved:

Theorem 1. Nontrivial perfect codes of length n exist only in the fol-
lowing three cases:

1) d = 3 and n = (qm − 1)/(q − 1),m > 1, q = pk, where p is a
prime number;

2) d = 7 and n = 23, q = 2;
3) d = 5 and n = 11, q = 3.

The well-known binary and ternary Golay codes are perfect codes
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of lengths 23 and 11 respectively; up to equivalence these codes are
uniquely determined. If d = 3 and n = (qm−1)/(q−1) many construc-
tions of perfect codes exist, especially for the binary case. We give a
list of these constructions and describe some of them with the goal to
establish bounds on the number of perfect binary codes and to show the
main approaches to the construction of such codes. We also consider
some nontrivial properties of perfect codes. From now on if it will not
be otherwise stated we only consider perfect binary codes with distance
d = 3 (we briefly call them perfect codes) because the binary case is
usually typical and very often it is possible to generalize a construction
developed for the binary case to a q-ary case, q > 2 taking into account
the structure of the Galois field GF (q).





Chapter 2

The Hamming code and its
properties

To define a binary Hamming code, which was presented by Hamming
in 1949 we would remind the following theorem.

Theorem 2. If H is the parity check matrix of a linear code of length
n, then the code has minimum distance d if and only if every d − 1
columns of H are linearly independent and some d columns are linearly
dependent.

Now we are going to construct a perfect binary group code with
distance 3.

Using a proof of the well known Varshamov and Gilbert bound
Theorem, see [46], chapter 1, for any natural number m we have to
take binary vectors of length m satisfying Theorem 2 for the case when
the code distance equals 3. We have to construct a parity check matrix
such that any two columns are linearly independent and some three
vectors are linearly dependent. Excluding the all-zero vector 0m we
can take in this case all vectors from the vector space Em. As a result
we have a group code with distance 3 defined by its parity check matrix.
It is called the Hamming code. We will further denote it by Hn.

The parameters of the Hamming code Hn are the following

[n = 2m − 1, k = n− log(n + 1), d = 3],

5



6 The Hamming code and its properties

m = log(n+1) (here and below log(n+1) is always a binary logarithm
if not stated otherwise) we use here the same notations as in the book
of MacWilliams and Sloane [46]: n stands for the code length, k – for
the dimension of the code and d – for the distance.

Proposition 1. The Hamming code Hn is perfect.

Proof. This code corrects one error according to the definition of the
code. The size of the code is

|Hn| = 2k =
2n

n + 1
.

Therefore the code reaches the Hamming bound and is perfect.

Proposition 2. The Hamming code Hn is unique up to equivalence.

Proof. One Hamming code presented by its parity check matrix differs
from another one only by a permutation π of its parity check matrix
columns. This permutation gives the same permutation π of n coordi-
nates positions, which transforms one code to another.

Examples of the Hamming codes of length 7.

Let us consider the following three different presentations of the
Hamming code of length 7.

1) It can be done in the standard form, see [46], chapter 1, which
means that last three columns define the identity matrix of order 3, for
example the parity check matrix is

H =




0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1


 .

2) A code C of length n is cyclic if the word (x2, x3, . . . , xn, x1) ∈ C
for any codeword x = (x1, x2, . . . , xn) ∈ C.



Decoding of the Hamming code 7

The Hamming code H7 presented by its parity check matrix given
in the cyclic form is the following:

H =




0 1 0 0 1 1 1
1 0 0 1 1 1 0
0 0 1 1 1 0 1


 .

3) In many cases it is useful to define the Hamming code by its
parity check matrix given in the lexicographic order of increasing binary
numbers:

H =




0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


 .

2.1 Decoding of the Hamming code

Decoding of the Hamming code is very easy. Let us consider a presen-
tation of the Hamming code Hn in the lexicographic order of increasing
binary numbers:

Hm = [B(1), B(2), . . . , B(n)],

here Hm is a parity check matrix of the code Hn, m = log(n + 1), B(i)
is the binary presentation of an integer i. Using the parity check matrix
Hm we can formulate the following definition of the Hamming code:
Hn = {x = (x1, . . . , xn) : x ∈ En and

∑n
i=1 B(i)× xi = 0m.}

If there is a single error in the i-th coordinate and we receive a vector
y from the channel we can calculate the syndrome

S = Hy> = Hei = B(i),

which shows the error position i in the vector y. Here ei is the vector
of weight one with 1 only in the i-th coordinate position.

Later we consider the construction of a Hamming code over the
Galois field GF (q) for any q.
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Exercises.

1. Find the different numbers of bases in the n-cube En.

2. Find the different numbers of linear binary codes of length n and
cardinality k.

3. Let us receive the vector y = (01101101). Find the input code-
word if it was used the binary extended Hamming code of length 8
given by its parity check matrix in the lexicographic presentation.



Chapter 3

Vasil’ev codes

Before defining the main switching approach to construct perfect codes
(see chapter 7), we are going to consider the first switching construction
of perfect codes given by an analytic formula. Further we will show that
this construction is really a switching construction. This well known
construction was presented by Vasil’ev in 1962, see [84].

In 1959 Shapiro and Slotnik, see [69], conjectured that there is no
nonlinear perfect code. Vasil’ev constructed a very large class of perfect
binary nonlinear codes and showed that this conjecture was false.

Let C(n−1)/2 be a perfect code of length (n− 1)/2 = 2m − 1,m ≥ 2,
and λ be an arbitrary function from C(n−1)/2 to the set {0, 1}. For
x = (x1, . . . , x(n−1)/2) ∈ E(n−1)/2 let |x| = x1 + . . . + x(n−1)/2(mod2).

Theorem 3. (Vasil’ev, 1962, see [84].) The set

V n = {(x + y, |x|+ λ(y), x) : x ∈ E(n−1)/2, y ∈ C(n−1)/2}
is a perfect binary code of length n.

Proof. We have to check the code parameters: code length, size of
the code and code distance.

1. It is easy to check that the length satisfies the condition n =
2m+1 − 1:

n = 2 · (n− 1)/2 + 1 = 2 · 2m − 1.

2. The size of the code is

|V n| = |E(n−1)/2|·|C(n−1)/2| = 2(n−1)/2·2(n−1)/2/((n−1)/2+1) = 2n/(n+1).

9



10 Vasil’ev codes

3. Now we are going to check that the distance between two arbi-
trary codewords

u = (x + y, |x|+ λ(y), x),

v = (x′ + y′, |x′|+ λ(y′), x′)

is at least 3.
There are the following three cases:
3a. If y = y′ and x 6= x′ then

d(u, v) = d((x, |x|, x), (x′, |x′|, x′)) ≥ 3

because x, x′ ∈ E(n−1)/2 and d(x, x′) ≥ 1.
3b. Suppose y 6= y′ and x = x′. Vectors y, y′ are from C(n−1)/2

therefore d(y, y′) ≥ 3 and we get

d(u, v) ≥ d(y, y′) ≥ 3.

3c. Assume y 6= y′ and x 6= x′ then for

d(x, x′) ≥ 1, 2, 3, . . .

we have
d(x + y, x′ + y′) ≥ 2, 1, 0, . . .

respectively. Adding these distances we obtain

d(u, v) ≥ 3.

The proof is done.

Corollary 1. If λ ≡ 0 and C(n−1)/2 = H(n−1)/2 we get the Hamming
code

Hn = {(x + y, |x|, x) : x ∈ E(n−1)/2, y ∈ H(n−1)/2}
of length n.

Corollary 2. Assume λ(y)+λ(y′) 6= λ(y+y′) for some y, y′ ∈ C(n−1)/2.
Then we get a nonlinear perfect code of length n from Vasil’ev’s con-
struction.
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Since λ is an arbitrary function, taking into account all previous
iterative steps we obtain the following statement.

Corollary 3. The number Dn of different Vasil’ev codes of length n
satisfies the lower bound

Dn ≥ 22
n+1

2 −log(n+1) · 22
n+5

4 −log(n+1) · 22
n+9

8 −log(n+1) · . . .

Knowing the number of all perfect codes of a certain length n it
is easy to calculate the number of nonequivalent perfect codes. One
has to only divide this number by the number 2n · n!, where 2n stands
for the different possible translates in En and there are n! valuable
permutations of all the coordinate positions. Therefore it is possible to
treat equivalent codes as different codes. It is not difficult to see from
Corollary 3 the following statement:

Corollary 4. The number Nn of nonequivalent Vasil’ev codes of length
n satisfies the lower bound

Nn ≥ 22
n+1

2 −log(n+1) · 22
n+5

4 −log(n+1)

for n sufficiently large.

This bound has been the best lower bound for a long time. The
lower bounds on the number of nonequivalent perfect codes of length
n given by other researches till 1996 were of the form

22
n+1

2 (1−εn)

,

where εn → 0 if n →∞.
How to get better than the Vasil’ev lower bound on the number of

nonequivalent perfect binary codes see below Section 7.2.
For n = 7 there exists only one perfect code, for n = 15 there are

11 nonequivalent Vasil’ev codes, see [33] and at least 963 nonequivalent
perfect codes of length 15, see Phelps [61].
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Exercise. Prove Corollary 4 using the Stirling formula

nne−n
√

2nπ ≤ n! ≤ nne1−n
√

2nπ.

Open problem

Find the classification of all perfect binary codes of length 15.



Chapter 4

Steiner triple systems

There is a close relation between perfect codes and Steiner triple sys-
tems.

A Steiner triple system of order n (briefly STS(n)) is a family of
3-element blocks (subsets or triples) of the set N = {1, 2, . . . , n} such
that each not ordered pair of elements of N appears in exactly one
block.

Two STS-s of order n are called isomorphic if there exists a permu-
tation on the set N which transforms them into one another.

It is well known that STS(n) exists if and only if n ≡ 1 or 3
(mod 6). It is easy to calculate that the number of blocks in STS(n)
is |STS(n)| = n(n− 1)/6.

Further we will identify any vector x = (x1, . . . , xn) ∈ En with its
block presentation (i1, . . . , ik), where i1, . . . , ik are only the coordinate
positions of the vector x equaled to 1. This correspondence is one-to-
one and further every time when we consider a block presentation of
a vector x it will be clear what is the length of this vector. A vector
x + 1n is called a compliment to the vector x.

Example. Let us consider a Steiner triple system of order 7

STS(7) = {(1, 2, 3), (1, 4, 5), (2, 4, 6), (3, 4, 7), (1, 6, 7), (2, 5, 7), (3, 5, 6)}.

It is not difficult to see that this set with its complement blocks of
weight 4 in E7 together with 07 and 17 gives the Hamming code H7 of
length 7.

13



14 Steiner triple systems

Theorem 4. Let a perfect code Cn of length n contain the all-zero
vector. Then all its codewords of weight 3 form an STS(n).

Proof. By the condition of the theorem 0n ∈ Cn. By the close-packed
property of the code Cn each not ordered pair (i, j), where i, j ∈ N,
belongs to some triple (i, j, k) from Cn. It is easy to show that this
pair belongs to only one triple. Suppose there exists another triple
(i, j, t), t 6= k from Cn containing the pair (i, j). Then

d((i, j, k), (i, j, t)) = 2,

which contradicts to the fact that the code distance in Cn is 3. The
proof is done.

Let En
i = {x = (x1, . . . , xn) : x ∈ En and w(x) = i}. We consider

without proofs the following two theorems.

Theorem 5. (See [45].) For any n ≡ 1 or 3 (mod 6), n > 7, there
exists a partition of En

3 into n− 2 disjoint STS-s of order n.

Theorem 6. The number N(n) of nonisomorphic Steiner triple sys-
tems of order n satisfies the following bounds

(e−5n)
n2

6 ≤ N(n) ≤ (e−1/2n)
n2

6 .

The lower bound was proved by Egorychev in 1980 using the result
on permanents of double stochastic matrices, see [25, 26], the upper
bound is straightforward.

4.1 The Assmuss and Mattson construc-

tion of Steiner triple systems

Assmuss and Mattson obtained the following constructon for STS(n),
n ≡ 1, 3 (mod 6) using Vasil’ev’s construction for perfect codes:

Theorem 7. (Assmuss and Mattson, 1966, see [2].) Let S(n−1)/2 be
STS((n − 1)/2) defined on the set N = {1, . . . , (n − 1)/2}, n ≡ 1, 3
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(mod 6) and λ be any function from S(n−1)/2 to the set {0, 1}. Then the
set Sn is an STS of order n defined by the following rules:

1) the triples (i, (n + 1)/2, i + (n + 1)/2) are in Sn for any i ∈ N ;

2a) if (i, j, k) ∈ S(n−1)/2 and λ(i, j, k) = 0 then

(i, j, k), (i, j +
n + 1

2
, k +

n + 1

2
), (i +

n + 1

2
, j, k +

n + 1

2
),

(i +
n + 1

2
, j +

n + 1

2
, k) ∈ S2n+1;

Figure 4.1: An illustration to λ(i, j, k) = 0

2b) if (i, j, k) ∈ S(n−1)/2 and λ(i, j, k) = 1 then

(i +
n + 1

2
, j +

n + 1

2
, k +

n + 1

2
), (i +

n + 1

2
, j, k), (i, j +

n + 1

2
, k),

(i, j, k +
n + 1

2
) ∈ S2n+1.

Figure 4.2: An illustration to λ(i, j, k) = 1

In Figures 4.1 and 4.2 in every matrix three points in the first (sec-
ond) line stands for i, j and k (i + n+1

2
, j + n+1

2
, k + n+1

2
) respectively.

It is not difficult to check from the construction that every not
ordered pair (i, j) of elements from the set {1, . . . , n} is exactly in one
block.
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Theorem 8. An Assmuss and Mattson STS(n) of order n = 2m − 1
is a Steiner triple system STS(V n) obtained from the Vasil’ev code V n

when 0n ∈ V n.

Before to prove the theorem we consider an example for n = 7, in
the case the Vasil’ev code of length 7 coincides with the Hamming code
H7. From Vasil’ev’s construction using (x, |x|, x) ∈ H7, w(x) = 1 we
immediately get the following triples in the code H7:

(1, 4, 5), (2, 4, 6), (3, 4, 7).

If λ(1, 2, 3) = 0, where (1, 2, 3) ∈ H3 then we have the following blocks

(1, 2, 3), (1, 6, 7), (2, 5, 7), (3, 5, 6)

in the code H7; if λ(1, 2, 3) = 1 then we have in H7 the blocks

(5, 6, 7), (2, 3, 5), (1, 3, 6), (1, 2, 7).

Proof. Let us consider any n = 2m − 1,m > 2. From Vasil’ev’s
construction we have (x, |x|, x) ∈ V n. If x = ei we get the block
(i, (n + 1)/2, i + (n + 1)/2) in V n and therefore in STS(V n) for each
i ∈ {1, . . . , (n− 1)/2}.

Suppose y = (i, j, k) ∈ V (n−1)/2 and λ(y) = 0. Then by Vasil’ev
construction we have the following blocks: if x = 0(n−1)/2 then (x +
y, |x| + λ(y), x) = (y,0(n+1)/2) ∈ V n and we get the triple (i, j, k) in
STS(V n).

If x = (i, j) then

(x + y, |x|+ λ(y), x) = (k, (n + 1)/2 + i, (n + 1)/2 + j)

in V n and therefore in STS(V n). Analogous considerations for the
pairs (j, k) and (i, k) give us the blocks

(i, j + (n + 1)/2, k + (n + 1)/2), (i + (n + 1)/2, j, k + (n + 1)/2)

respectively in STS(V n).
The case λ(y) = 1 is analogous. It is easy to see that the triples

we have constructed are different from each other. The number of all
triples is

n− 1

2
+ 4 ·

(
(n− 1)/2

2

)

3
=

n(n− 1)

6
.
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It is the correct number of all blocks in STS of order n. By this con-
struction and the previous theorem it is clear that the Assmuss and
Mattson STS of order n is STS(V n).

Exercises.

1. Prove that the number of all blocks in any Steiner triple system
of order n is n(n− 1)/6.

2. Construct STS(15) by the Assmuss and Mattson construction
using some nontrivial function λ : STS(7) → {0, 1}.

3. Prove that all codewords of weight 4 in any extended perfect
code of length n containing the all-zero vector form a Steiner quadruple
system. Remind that a Steiner quadruple system of order n is a family
of 4-element blocks (subsets or quadruples) of the set N = {1, 2, . . . , n}
such that each not ordered triple of elements of N appears in exactly
one block.

Open problem

Improve the lower and upper bounds on the number of nonisomor-
phic Steiner triple systems presented in Theorem 6.





Chapter 5

On one property of linear
codes

Further in this chapter the set of rows of a generator matrix of a code
will be called base set of codewords or shortly a base set.

Theorem 9. (Glagolev, 1976, see [42].) For any linear [n, k, d] code
C there exists a linear code C ′ with the same parameters such that its
base set consists of codewords of minimal weight d.

Proof. Let us take the set

Td ∪ Td+1 ∪ . . . ∪ Td+p

as a base set of the code C. Here the set Td is a maximal linearly
independent set of codewords of weight d, Td ⊂ C, then we add the set
Td+1 of codewords of weight d + 1. It is the maximal possible linearly
independent subset of codewords of weight d+1 which can be found in
the code C such that Td ∪ Td+1 is a maximal linearly independent set
of codewords of weight not more than d + 1. And we go on till the set
Td+p. Therefore we have

C =< Td ∪ Td+1 ∪ . . . ∪ Td+p > .

Further we will use the following obvious observation:
If G is a linear code with distance d and if there exists a vector x

such that d(G, x) ≥ d then the set G ∪ (G + x) is a linear code with
code distance d.

19



20 On one property of linear codes

Consider any vector y ∈ Td+1. A distance between y and any code-
word from Td is more than d: d(Td, y) > d. If it is not true and there
exists a vector z ∈ Td such that d(y, z) = d then w(y + z) = d and by
the linearity of the code C we have y+z ∈ C and y +z /∈ Td. Hence we
get the subset Td∪(y+z) in the code C which is a linearly independent
set of codewords of weight d, a contradiction to the construction of the
set Td. Therefore

d(Td, y) ≥ d + 1. (5.1)

Then we can take a vector y′ of weight d such that y′ ≺ y, which
means that all coordinates equal to one of the vector y′ are between
coordinates equal to one of the codeword y. Using (5.1) we obtain

d(Td, y) > d(Td, y
′) ≥ d.

We can produce now a new set Td ∪ {y′} which gives us a linear code
Td ∪ (Td + y′) with distance d according to the observation given at the
beginning of the proof of this theorem. After that we use the set Td+1

further and in the same way we produce a new vector y′′ and a new
set Td ∪ {y′, y′′}, which is again a linear code with distance d and so
on, going from the set Td+1 to the set Td+p, in not more than k steps
we design a new linear [n, k, d] code C ′ with a base set consisting of
codewords of minimal weight d. The proof is done.

Remark.

In 1992 Simonis [70] proved that for any q each linear code over
the Galois field GF (q) with length n, dimension k and code distance d
can be transformed into a q-ary code D with the same parameters such
that D possesses a basis of weight d vectors.

The next statement follows immediately from Proposition 2 about
the uniqueness of the Hamming code and from Glagolev’s Theorem:

Corollary 5. There exists a base set consisting of codewords of weight
3 for a Hamming code.

Proof.
The statement follows immediately from Proposition 2 about the

uniqueness of the Hamming code and Glagolev’s Theorem.
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0
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0
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...
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Figure 5.1: An illustration to Corollary 5

But Glagolev’s Theorem does not give the way how to construct
such base set. It can be easily produced from the presentation of the
Hamming code by Vasil’ev’s construction. Now we are going to de-
velop a constructive proof of this corollary using induction by m, where
m = log(n + 1). For the aim we consider the Hamming code given by
Vasil’ev’s construction:

Hn = {(x + y, |x|, x) : x ∈ E(n−1)/2, y ∈ H(n−1)/2}. (5.2)

If m = 2 then the Hamming code of length 3 is obviously generated
by the all-one codeword of length 3.

Let Bn be a basis of the Hamming code Hn,

|Bn| = n− log(n + 1).

Let us consider the set

B2n+1 = B′
n ∪

n⋃
i=1

(ei + en+1 + en+1+i),

where
B′

n = {(y,0n+1) : y ∈ Bn}.
According to (5.2)

ei + en+1 + en+1+i ∈ H2n+1

for any i = 1, . . . , n. It is easy to see that B2n+1 consists of linearly in-
dependent codewords of H2n+1 of weight 3, see an illustration in Figure
5.1.
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The equality

|B2n+1| = |Bn|+ n = 2n− log(n + 1)

shows that B2n+1 is the required set of codewords of the code H2n+1.
The proof is done.



Chapter 6

Concatenation approach

6.1 The main idea of the concatenation

approach

There are a lot of concatenation constructions, see, for example, surveys
[24, 75]. First we remind the definition of a q-ary Hamming code using
the parity check matrix.

q-ary Hamming code

The main idea to design the parity check matrix for the q > 2 case
is the same as for q = 2. We have to take such columns that any two of
them are linearly independent and there exist three linearly dependent
columns. But in the case q > 2 we cannot use all nonzero m-tuples
because some of them can be linearly dependent. For example, vectors
(11011) and (22022) are linearly dependent over GF (3). To guarantee
linear independence for any two columns we take as columns all nonzero
vectors of length m over GF (q) with first nonzero entry equal to 1. The
total number of nonzero vectors of length m over GF (q) is qm− 1, it is
clear that among them we have

(qm − 1)/(q − 1)

vectors with the prescribed property. Therefore the code length of the
Hamming code with m parity check symbols is n = (qm − 1)/(q − 1),

23
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the size of the code is qn−m and by the construction the code distance
is 3. So we obtain the code with parameters

(n = (qm − 1)/(q − 1), qn−m, d = 3)q.

This code will be denoted by Hn
q .

Example.
Let us consider the Hamming code over GF (3) with two check sym-

bols. A parity check matrix in the standard form is

H =

(
1 1 1 0
1 2 0 1

)
.

Therefore we get a ternary Hamming code H4
3 of length 4. Going from

this parity check matrix to the generator matrix in the standard form

G =

(
1 0 −1 −1
0 1 −1 −2

)
=

(
1 0 2 2
0 1 2 1

)

we construct all codewords of the type

α1x1 + α2x2,

where x1, x2 are rows from G and α1, α2 ∈ {0, 1, 2} :

information blocks =⇒ codewords




0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2




=⇒




0 0 0 0
0 1 2 1
0 2 1 2
1 0 2 2
1 1 1 0
1 2 0 1
2 0 1 1
2 1 0 2
2 2 2 0
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The main idea of the concatenation construction

The construction was presented by Zinoviev in 1970. Below we use
the notation (n,K, d) for a code of length n, cardinality K and code
distance d.

Let A be a q-ary (n, |A|, d) code. Let B be a q′-ary (N, |B|, d′)
code, with |B| = q. We label the codewords of B from 0 to q − 1:
B = {b(0), . . . ,b(q − 1)}. For any codeword a = (a1, . . . , an) ∈ A,
we construct the vector a(B) =

(
b(a1)| . . . |b(an)

)
, where | stands for

concatenation. The set C = {a(B) : a ∈ A} is a q′-ary code. It is easy
to check the code parameters:

length nN , size |C| = |A| and minimum distance d(C) ≥ dd′.
The codes A, B and C are called, respectively, the outer, inner and

concatenated codes.

6.2 Solov’eva codes – 1981

To define the concatenation construction presented in [71] we need par-
titions of En into perfect codes.

Partitions of En into perfect codes

Let us consider any perfect code C of length n. By the close packed
property of a perfect code it is easy to get the following trivial partition
of En into ”cosets” of any (even nonlinear) perfect code C:

En = C ∪ (C + e1) ∪ . . . ∪ (C + en).

We are going to construct a large class of nontrivial partitions of En

into perfect codes of any admissible length n > 7 using Vasil’ev’s con-
struction. We will denote the class by Pn.

Theorem 10. (Solov’eva, 1981, see [71].) There exists a class Pn of
different partitions of En into perfect codes of length n > 15, where

|Pn| ≥ 22(n−1)/2

.
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Proof. The proof will be done by induction on m,m = log(n + 1).
For m = 2 and 3 there exist only trivial partitions because for n = 3

and n = 7 there exist only linear perfect codes H3 and H7.
Let us take any partition of E(n−1)/2, m = (n − 1)/2, into some

perfect codes of length (n− 1)/2:

E(n−1)/2 =

(n−1)/2⋃
i=0

C
(n−1)/2
i .

Let us consider the case m + 1. Using Vasil’ev’s construction and
C

(n−1)/2
i for each i ∈ {0, 1, . . . , (n − 1)/2} we construct the following

two perfect codes of length n.
The first code is

Cn
i = {(x + y, |x|+ λi(y), x) : x ∈ E(n−1)/2, y ∈ C

(n−1)/2
i },

the second one is
Cn

i+(n+1)/2 = Cn
i + e(n+1)/2,

where, as it was defined in Vasil’ev’s construction, the function λi is
any function from C

(n−1)/2
i to the set {0, 1}. It is easy to show that any

two perfect codes in the partition do not intersect.
The number of different partitions is not less than the number of

choices of different functions λi(y) for each i = 0, 1, . . . , (n − 1)/2. So
we get

|P n| ≥ (2|C
(n−1)/2
i |)

n+1
2 ≥ (2

2(n+1)/2

n+1 )
n+1

2 = 22(n−1)/2

,

This concludes the proof.

Theorem 11. (Solov’eva, 1981, see [71].) Let

En =
n⋃

i=0

Cn
i , En =

n⋃
i=0

Dn
i

be any two partitions of En into perfect codes of length n and π be
any permutation on n positions. Then the set

C = {(x, y, |y|) : x ∈ Cn
i , y ∈ Dn

π(i), i = 0, 1, . . . , n}
is a perfect binary code of length 2n + 1.
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Proof. It is clear that the number of coordinate positions is 2n + 1 =
2m+1 − 1 if n = 2m − 1.

The cardinality of the code is

|C| = (n + 1) · |Cn
i | · |Dn

i | = (n + 1) · (|Cn
i |)2

= (n + 1) · 22n

(n + 1)2
=

22n+1

(2n + 1) + 1
.

Finally we have to check if the code distance of the code C is 3. Let
u = (x, y, |y|) and v = (x′, y′, |y′|) be any two codewords from C. There
are three cases.

1. If x = x′, y 6= y′, x ∈ Cn
i , i = 0, 1, . . . , n then y, y′ ∈ Dn

π(i) and

d(y, y′) ≥ 3 and therefore d(u, v) ≥ 3.
2. The case x 6= x′, y = y′ is analogous to the previous case.
3a. Suppose x 6= x′, y 6= y′ and x, x′ ∈ Cn

i . Then d(x, x′) ≥ 3 and
therefore d(u, v) ≥ 3.

3b. Assume x 6= x′, y 6= y′ and x ∈ Cn
i , x′ ∈ Cn

j , where i, j ∈
{0, 1, . . . , n} and i 6= j. Then y ∈ Dn

π(i) and y′ ∈ Dn
π(i). If |y| = |y′| then

d(y, y′) ≥ 2, d(x, x′) ≥ 1 and therefore d(u, v) ≥ 3. If |y| 6= |y′| then
d(y, y′) ≥ 1, d((y, |y|), (y′, |y′|) ≥ 2, d(x, x′) ≥ 1 and again d(u, v) ≥ 3.

The proof is done.

This construction can be easily generalized to extended perfect
codes.

Remarks.
1. It can be shown that this construction is the concatenation con-

struction, see, for example, below sections 6.7 and 6.6 (remark 2), it is
the reason why we call it the concatenation construction. It can also
be called X-4 construction, see [46], chapter 18.

2. It should be noted that using this concatenation construction it
is possible to construct partitions of En into perfect binary codes, see,
for example, [71, 14].

3. The class of perfect codes described in the last theorem is not
equivalent to the class of Vasil’ev codes and contains Heden codes prop-
erly. Two years later Phelps [55] in 1983 independently discovered
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Ci Ci ×Dπ(i)

Dπ(i)

EN

EN

Figure 6.1: An illustration to theorem 11, the case of extended perfect
codes

Solov’eva’s construction and generalized it in 1984 [56], see Section
6.6. Heden’s construction properly contains the class of Laborde (1983)
codes [43], cf. [30].

4. The investigation of perfect binary codes of length 15 given by
the concatenation construction from [71, 55] is done by Phelps in [61].
It is shown that there exist at least 963 and at most 15408 inequivalent
such codes.

5. Exploiting the same concatenation construction, see Theorem 11,
lower and upper bounds on the number of intersection matrices given by
different partitions of the space En into perfect binary codes are given
in [14]. The following problem is considered: given two partitions of En

into perfect codes, their intersection matrix provides the cardinalities
of the pairwise intersections of the subsets of these partitions. It is
established that the number of different, or nonequivalent, intersection
matrices given by partitions of extended perfect binary codes of length
n is at least 2cn2

and at most 2c′n3
, where n is large and c, c′ are positive

constants. The problem of the construction of partitions of En is also
considered in [28].

It should be mentioned that the problem of enumerating the dif-
ferent partitions of the n-cube En is closely related to the problem of
enumerating all perfect codes of length n, because the number of parti-
tions is closely connected to the number of different perfect codes. For
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example, double logarithms of these numbers are asymptotically equal.

Exercises.

1. Prove that Cn
i ∩Cn

j = ∅ for any i, j ∈ {1, 2, . . . , (n− 1)/2}, i 6= j
in Theorem 10.

2. Construct a class of partitions using Theorem 11.

3. Generalize the concatenation construction from Theorem 11 to
extended perfect codes.

4. How to construct the Hamming code by the construction from
Theorem 11?

6.3 Romanov codes

Let us consider an application of the concatenation construction for
codes, which are not perfect. We are going to present a code of length
16 with the best known cardinality correcting a single error.

It is well known that there exists a partition of E9
3 into seven STS-s

of order 9. Denote these STS-s by Si, i = 1, . . . , 7 :

E9
3 =

7⋃
i=1

Si.

Let us consider also a partition of E7 into cosets of the Hamming code
H7:

E7 =
7⋃

i=0

(H7 + ei).

Let S ′i be the set of all compliment words of the set Si in E9 :

S ′i = {z + 19|z ∈ Si}.

Theorem 12. (Romanov, 1983, see [65].) The set C16 defined by

{(x, y) : x ∈ Si ∪ S ′i, y ∈ H7 + ei, i = 1, . . . , 7 or x ∈ {07,17}, y ∈ H7}

is a single error-correcting code of length 16 and cardinality 2720.
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We omit the proof because it is analogous to the proof of Theorem
11.

The construction can be useful to get a class of good codes of length
2m ≤ n ≤ 2m + 2m−4 exploiting the well known Plotkin’s construction.
For the aim to show it we remind Plotkin’s construction.

It is easy to prove the following proposition.

Proposition 3. For any words a and b from En it is true

w(a + b) ≥ w(a)− w(b).

Theorem 13. (Plotkin, 1960, see [46].) Let C be an (n,M1, d1) code
and D be an (n, M2, d2) code. Then the set

C2n = {(x, x + y) : x ∈ C, y ∈ D}
is an (n,M1 ×M2, d = min{2d1, d2}) code.

Proof. Let
u = (x, x + y), v = (x′, x′ + y′)

be distinct codewords of the code C2n, where x, x′ ∈ C, y, y′ ∈ D.
If y = y′ then

d(u, v) = d((x, x), (x′, x′)) = 2d(x, x′) = 2d1.

If y 6= y′ then using the previous proposition we obtain

d(u, v) = w(x− x′) + w(x + y − x′ − y′) ≥
w(x− x′) + w((y − y′) + (x− x′)) ≥

w(x− x′) + w(y − y′)− w(x− x′) = w(y − y′) = d2.

The proof is done.

Taking an even weight code D of length 17 and the extended Ro-
manov code C of length 17 in Plotkin’s construction one can build up
a class of codes with good parameters:

D : (17, 216, 2), C : (17,
85

64
× 211, 4) =⇒ (34,

85

64
× 227, 4).
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Shortening the code obtained we get the two following codes

(34,
85

64
× 227), 4) =⇒ (33,

85

64
× 227, 3) =⇒ (32,

85

64
× 226, 3)

with good parameters.
Starting with these codes we obtain by induction on m = log n the

following result:

Theorem 14. (Romanov, 1983, see [65].) For any block length n satis-
fying 2m ≤ n ≤ 2m +2m−4−1 there exists a nonlinear (n, λ×2n−m−1, 3)
code, where λ = 85

64
.

For codes of length more than 16 it should be mentioned that there
exist known codes with good parameters, for example, Etzion code of
length 17, cardinality 5312, distance 3 or Hämäläinen code of length
18, cardinality 10496 and distance 3, see [32]. One can get, using these
codes and the same Plotkin’s construction an infinite class of codes with
good parameters. We consider Hämäläinen’s construction in Section 6.4
below.

6.4 Hämäläinen codes

The main idea of Hämäläinen’s construction is the following: first find
a good subcode over a four element subalphabet in the Hamming code
with parameters (6, 54, 3)5, then apply to this subcode a concatenation
construction. Now we are going to develop this construction in more
details.

Consider the Hamming code Hn
q of length n = 6 over the Galois

field GF (5), so q = 5. Let us take the following generator matrix of
the code in standard form

G =




1 0 0 0 1 4
0 1 0 0 1 3
0 0 1 0 1 2
0 0 0 1 1 1




we construct all codewords of a type

α1x1 + α2x2 + α3x3 + α4x4,
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where x1, x2, x3, x4 are rows from G and α1, α2, α3, α4 ∈ {0, 1, 2, 3, 4}.
The size of the code is 54. Let us fix an element k ∈ {1, 2, 3, 4}. Using
inclusion and exclusion method eliminate from the code H6

5 all code-
words containing a coordinate equal to k :

54 +
4∑

i=1

(−1)i

(
6
i

)
54−i − 1 = 164,

here there exists only one vector with five coordinates equal to k, for
example, if k = 4, the vector is (4, 2, 4, 4, 4, 4). The resulting subcode
is a restriction of the Hamming code H6

5 to the subcode with 164 code-
words over the four element subalphabet {0, 1, 2, 3} with code distance
3.

To get a code of length 18 we apply the following concatenation
construction for the subcode:

instead of 0 we take the Hamming binary code H3 of length 3:

0 → {000, 111};
every element from the set {1, 2, 3} we replace by a coset of the Ham-
ming code H3 such that any two different elements will be replaced by
different cosets. At the end of the procedure we get a binary code with
parameters (18, 10496, 3), that means code length 18, size

164× 26 = 10496

and code distance 3.
Deleting one coordinate in this code one can easily get a code

with parameters (17, 5248, 3).
So we prove the following statement:

Theorem 15. (Hämäläinen, 1988, see [32], see also [34].) There
exist (18, 10496, 3) and (17, 5248, 3) binary codes.

Exercises.

1. Prove Proposition 3.

2. Prove Theorems 12 and 14.

3. Prove that a subcode of the Hamming code with parameters
(6, 54, 3)5 over a four element subalphabet {1, 2, 3, 4}, which does not
contain the element 0 consists of 160 codewords.
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6.5 Zinov’ev’s concatenation construction

– 1988

Let us consider a more complicated concatenation construction, which
was presented by Zinov’ev in 1988, see [96]. In fact the construction
can be considered as a generalization of Hämäläinen’s construction.

Let now A be a q-ary perfect (n, |A|, 3) code, q = 2k, n = 2k +1, for
example, we can take the Hamming code over GF (2k), k > 1 with two
check symbols. Let C0, C1, . . . , Cr be any partition of the vector space
Er into perfect codes, r = 2k − 1.

Theorem 16. (Zinov’ev, 1988, see [96].) The set CN defined by

CN =
⋃

(x1,x2,...,xn)∈A

Cx1 × Cx2 × . . .× Cxn

is a perfect binary code of length N = nr = 22k − 1, k > 1.

Proof. The length of the code is

N = n(q − 1) = (2k + 1)(2k − 1) = 22k − 1.

The size of the code is

|CN | = |Hn
q | × |C0|n = 2k2k−k(22k−1−k)2k+1

= 2k2k−k × 222k−1−k2k−k = 2N−log(N+1),

where N = 22k − 1.
Let us check the code distance. Consider any two different code-

words
x = (x1, x2, . . . , xn),

y = (y1, y2, . . . , yn)

from A.
If x 6= y then d(x, y) ≥ 3 and there exist at least three coordinate

positions i, j, k, where x and y differ. Therefore there are at least three
pairs of codes in the partition En such that

d(Cxi
, Cyi

) ≥ 1, d(Cxj
, Cyj

) ≥ 1, d(Cxk
, Cyk

) ≥ 1
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and we get

d(Cx1 × Cx2 × . . .× Cxn , Cy1 × Cy2 × . . .× Cyn) ≥ 3.

Assume x = y. Then we get the set

Cx1 × Cx2 × . . .× Cxn

and taking into account that every Cxi
is a perfect binary code we have

the distance between any two vectors of the set at least three.
Remark

The construction was independently presented in 1989 in [72].

6.6 Phelps codes

Let C0
1 , C

0
2 , . . . , C

0
r and C1

1 , C
1
2 , . . . , C

1
r be any partitions of the even

and odd weight vectors of Er into extended perfect codes of length r
respectively, Cm be an extended perfect code of length m in Em, in
this section r = 2k, m = 2p. For each vector µ ∈ Cm, let Cµ be a
minimum distance 2 code of length m over GF (r), |Cµ| = rm−1, (Cµ

is an MDS code). Remind that an MDS code C of length m, size
|C| and distance d over GF (r) is a code, which reaches the Singleton
bound m− logr |C| ≤ d− 1.

Theorem 17. (Phelps, 1984, see [56].) The set Cn defined by

Cn = {(c1|c2| . . . |cm) : ci ∈ Cµi

ji
, µ = (µ1, µ2, . . . , µm) ∈ Cm,

j = (j1, j2, . . . , jm) ∈ Cµ}
is an extended perfect binary code of length n = mr.

We will further call the code Cm a base code.

Proof. Another way to write the construction of the code is

Cn =
⋃

µ∈Cm

⋃
j∈Cµ

Cµ1

j1
× . . .× Cµm

jm
.

We will use this presentation of the code to prove this theorem.
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It is obvious that the length of the code is n = mr.
The size of the code is

|Cn| = |Cµi

ji
|m×|Cµ|×|Cm| = (2r−log r−1)m×rm−1×2m−log m−1 = 2n−log n−1,

here n = mr.
Let us check that the code distance satisfies

d = d(Cµ1

j1
× . . .× Cµm

jm
, C

µ′1
j′1
× . . .× C

µ′m
j′m

) ≥ 4

for any µ, µ′ ∈ Cm and j, j′ ∈ Cµ.
There are some cases.
1) The case µ = µ′, j = j′ is trivial.
2) Assume µ = µ′, j 6= j′.
Then d(j, j′) ≥ 2 and there exist coordinate positions s, t such

that js 6= js′ , jt 6= jt′ . From this inequalities taking into account that
Cµs

js
and Cµs

j′s
are both even or odd weight perfect codes (analogous for

the codes Cµt

jt
and Cµt

j′t
) we have d(Cµs

js
, Cµs

j′s
) ≥ 2 and d(Cµt

jt
, Cµt

j′t
) ≥ 2.

Therefore

d(Cµ1

j1
× . . .× Cµs

js
× Cµt

jt
× . . .× Cµm

jm
,

Cµ1

j′1
× . . .× Cµs

j′s
× Cµt

j′t
× . . .× Cµm

j′m
) ≥ 4.

3) Let µ 6= µ′, j = j′.
The vectors µ 6= µ′ are from the base code Cm, then d(µ, µ′) ≥ 4

and there exist four coordinate positions t, s, e and l where µ and µ′

differ. Therefore there are four pairs of perfect codes Cµi

ji
and C

µ′i
ji

,
i ∈ {t, s, e, l} such that

d(Cµi

ji
, C

µ′i
ji

) ≥ 1.

As a consequence we have the inequality d ≥ 4.
4) Let µ 6= µ′, j 6= j′. The proof d ≥ 4 is the same as in the case 3

and this finishes the proof.

Remarks.

1. Puncturing any coordinate of the extended perfect binary code
Cn gives us a perfect binary code of length mr − 1.
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2. For m = 2, a code Cm is a trivial “extended perfect” code
consisting of a vector (0, 1). The code Cµ is an r-ary code of length 2
with distance 2, which corresponds to a permutation π on r elements

C(v) = {(1, π(1)), (2, π(2)), . . . , (r, π(r))}.

Thus Theorem 11 is a particular case of this theorem.

3. The number of nonequivalent codes of length n given by Theorem
6 is at least

22
n+1

2 (1−εn)

,

where εn → 0 if n →∞.

4. The generalization of the construction was done by Krotov in
[38], see below Section 7.3.

6.7 Generalized concatenated codes. Lob-

stein and Zinov’ev codes

Let B be a qB-ary
(
nB, K1, dB,1

)
code. Assume that the code B is

partitioned into q1 subcodes:

B =

q1−1⋃
i=0

Bi,

where Bi is a qB-ary (nB, K2, dB,2) code for i = 0, 1, . . . , q1 − 1.
Assume furthermore that each subcode Bi can be partitioned into

q2 subcodes: for i = 0, 1, . . . , q1 − 1,

Bi =

q2−1⋃
j=0

Bi,j,

where Bi,j is a qB-ary
(
nB, K3, dB,3

)
code, K3 = q3.

Let any codeword b ∈ B have index k in Bi,j then the triple

(i, j, k) ∈ {0, . . . , q1 − 1} × {0, . . . , q2 − 1} × {0, . . . , q3 − 1}

characterizes the vector b and one can note b = b(i, j, k).
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Consider, for ` = 1, 2, 3, a q`-ary
(
nA, KA,`, dA,`

)
code A` and a

codeword a` = (a`
1, . . . , a

`
nA

) ∈ A`. For any s = 1, . . . , nA the triple
(a1

s, a
2
s, a

3
s) designates a codeword b = b(a1

s, a
2
s, a

3
s) ∈ B.

Let

C = {(b(a1
1, a

2
1, a

3
1)| . . . |b(a1

nA
, a2

nA
, a3

nA
)
)

: a` ∈ A`, 1 ≤ ` ≤ 3}. (6.1)

Theorem 18. (See [94, 95].) The code C is a qB-ary code of length
nC = nAnB, cardinality KA,1KA,2KA,3 and distance

dC ≥ min{dA,1dB,1, dA,2dB,2, dA,3dB,3}.

Bi,0
Bi,j·

1
·
2
··· ·

k
··· Bi,q2−1 b=b(i,j,k)

B0

B1

Bi

Bq1−1

B:

Figure 6.2: An illustration of the generalized concatenated approach

Consider the binary case. Let B = EnB , B = EnB• ∪ (En \ EnB• ),
where EnB• are the all even vectors of B, nB = 2m. Consider for EnB•
and En \ EnB• partitions into 2m extended perfect codes of length nB.

Let A1 be a binary extended perfect code (nA, 2nA−1−u, 4), nA = 2u.
Let A2 be a nB-ary (nA, nnA−1

B , 2) code (it is an MDS code with distance
2) and A3 be a q3-ary (nA, qnA

3 , 1) code, where q3 = 2nB−1−m.

Using the construction from the last theorem we obtain from (6.1)
a binary extended perfect code C of length 2m+n.

Theorem 19. (See [97].) The code C is an extended perfect binary
code of length 2m+n.
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In [97, 98] Zinov’ev and Lobstein generalized last theorem by per-
muting all nB alphabet symbols of the second outer code A2.

In [98] they modified further the resulting code by adding an nB×nA

matrix to the codewords, using the fact that this does not alter the
distances between codewords. The fact allows them to get switching
Vasil’ev codes from this modified concatenation construction. Some
other concatenation constructions were done by Zinov’ev and Lobstein
in [99].

Remarks

1. The enumeration of binary extended perfect codes of length 16
obtained by a generalized concatenation construction was presented in
[100]. It is shown that there exist 285 such inequivalent codes.

2. A special case of this basic construction was obtained in [96].
In turn this construction is a special case of a construction by Phelps
described in [56] in a different way without mentioning concatenation
construction (see above the section 6.6). It should be mentioned that
a class of Phelps codes – 1984 (see above Section 6.6) can be described
by generalized concatenated approach given by Zinov’ev in 1975, see
[94], but in the paper [94] there is no the information about parameters
of the codes used in the generalized concatenation construction which
lead us to the perfect codes.



Chapter 7

Switching approach

7.1 Mollard codes, lower bound

Let us now consider Mollard’s construction, which is a generalization
of Vasil’ev’s construction.

Let Cr and Cm be two perfect codes of length r and m respectively,
here r = 2k − 1, m = 2p − 1. Let

x = (x11, x12, . . . , x1m, x21, . . . , x2m, . . . , xr1, . . . , xrm) ∈ Erm.

The generalized parity functions p1(x) and p2(x) are defined by

p1(x) = (σ1, σ2, . . . , σr) ∈ Er,

p2(x) = (σ′1, σ
′
2, . . . , σ

′
m) ∈ Em,

where σi =
∑m

j=1 xij and σ′j =
∑r

i=1 xij. Let f be an arbitrary function
from Cr to Em.

Theorem 20. (Mollard, see [53].) The set

Cn = {(x, y ⊕ p1(x), z ⊕ p2(x)⊕ f(y)) : x ∈ Erm, y ∈ Cr, z ∈ Cm}
is a perfect code of length n = rm + r + m.

Proof. It is easy to check that the code length is n = rm + r + m and
the size of the code is

|Cn| = |Erm| × |Cr| × |Cm| = 2rm × 2r

r + 1
× 2m

m + 1
=

2n

n + 1
.

39



40 Switching approach

Let
u = (x, y ⊕ p1(x), z ⊕ p2(x)⊕ f(y)),

u′ = (x′, y′ ⊕ p1(x
′), z′ ⊕ p2(x

′)⊕ f(y′))

be any two different vectors from the code Cn. We have to show that
d(u, u′) ≥ 3.

There are some cases.
1) If x = x′ then p1(x) = p1(x

′), p2(x) = p2(x
′) and

d(u, u′) = d(y, y′) + d(z, z′) ≥ 3.

2) If d(x, x′) = 1 then

d(p1(x), p1(x
′)) = d(p2(x), p2(x

′)) = 1.

If y 6= y′ then
d(y ⊕ p1(x), y′ ⊕ p1(x

′)) ≥ 2

and again d(u, u′) ≥ 3.
If y = y′ then

d(y ⊕ p1(x), y′ ⊕ p1(x
′)) = 1,

d(z ⊕ p2(x)⊕ f(y), z′ ⊕ p2(x
′)⊕ f(y′)) = d(z ⊕ p2(x), z′ ⊕ p2(x

′) ≥ 1

and therefore the result is d(u, u′) ≥ 3.
3) If d(x, x′) = 2 then d(p1(x), p1(x

′)) and d(p2(x), p2(x
′)) are 0 or

2 but both can not be zero at the same time. From this fact we have

y ⊕ p1(x) = y′ ⊕ p1(x
′) and z ⊕ p2(x)⊕ f(y) = z′ ⊕ p2(x

′)⊕ f(y′)

are not compatible and therefore d(u, u′) ≥ 3.

Remarks

1. In the case m = 1 Mollard’s and Vasil’ev’s constructions coincide.

2. It is proved in [73] that there exist Mollard codes which are not
Vasil’ev codes.

3. In Mollard construction the function f is a constant value func-
tion.

4. A generalization of Mollard construction was done by Krotov in
[35].
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x11

x2m

x1m

x21

m∑
i=1

x1i + z1 + f(y1)
m∑

i=1

x2i + z2 + f(y2)

m∑
i=1

xni + zn + f(yn)xn1 xnm
n∑

j=1

xj1 + y1

n∑
j=1

xjm + ym

Figure 7.1: An illustration to Theorem 20

7.2 Method of α-components

Switching methods (the method of α-components and the method
of i-components) allow to construct complicated and large classes of
perfect codes with different properties, see the survey [76]. Let us first
consider the method of α-components. It was introduced and developed
in [7, 8]. The main idea is the following.

Let M be a subset in a perfect code C. By a switch of the set M
we mean the exchange of the bit in the ith coordinate of all vectors of
a set M with the opposite bit. We get a new set, denoted by M + ei,
where ei is the word with ones only in the i-th coordinate. A set M
is an i-component of the perfect code C if K(M) = K(M + ei). As a
result we have a new perfect code C ′ = (C \M)∪ (M + ei), which can
be or can not be equivalent to the starting perfect code. We say that
C ′ is obtained from the code C by a switching (or a translation) of an
i-component M .

Next we take α ⊆ {1, . . . , n}. The set M is called an α-component
of the perfect code C if it is an i-component for every i ∈ α. First
for every α-component we choose an element i in the set α and make
a switch of any numbers of i-components from this α-component into
new i-components of the same cardinality. After that one can switch
the obtained α-components with new α-components using switchings
by not utilized coordinates from the set α. The resulting code is perfect
but different or even inequivalent to the starting perfect code.

The method of α-components is effectively suitable to the Hamming
code because it is possible to destroy the group structure of the Ham-
ming code in such a way that we can get the code with prescribed prop-
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M

M+ei

i

C

En

Figure 7.2: An illustration to the definition of i-components

erties. The method allows to construct complicated and large classes
of perfect codes with different properties, see the survey [76]. The first
essential improvement of the lower bound on the number of well known
Vasil’ev codes (which was the best from 1962 till 1996) was achieved
by this switching approach.

Now we give a sketch of the description of the construction of Av-
gustinovich and Solov’eva, see all details in [7, 8]. Let Hn be the Ham-
ming code of length n (a linear perfect code). Let {i, j, k} be the vector
of Hn of weight 3 with only the i-th, j-th and k-th coordinates equal
to 1 and

N1 = 2
n+5

4
−log(n+1), N2 = 2

n−3
4 .

Proposition 4. The Hamming code Hn can be partitioned into
{i, j, k}-components Rt

ijk :

Hn =

N1⋃
t=1

Rt
ijk.

Proposition 5. Every {i, j, k}-component Rt
ijk, t = 1, . . . , N1, can be

partitioned into i-components Rl
i :

Rt
ijk =

N2⋃

l=1

Rl
i.
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We now choose for every {i, j, k}-component Rt
ijk one of the coordi-

nates i, j or k and divide the {i, j, k}-component into the components
in the chosen coordinate. Thus the code Hn is split into the i-, j-
and k-components with minimal cardinalities. This partitioning of the
Hamming code allows one to construct a large class of different perfect
binary codes.

Theorem 21. (Avgustinovich, Solov’eva, 1996, see [7, 8].) There
are at least

22
n+1

2 −log(n+1) · 62
n+5

4 −log(n+1)

different perfect binary codes of length n.

In fact we counted the lower bound on the number of different per-
fect codes of ranks not more than n − log(n + 1) + 2. Here the rank
r = r(C) of a code C is the dimension of the subspace < C > spanned
by the code C. To get the bound for different numbers of perfect codes
of ranks more than n− log(n + 1) + 2 the method described above can
be implied, for example, to any partition of the Hamming code into
α-components, where |α| > 3.

The first modification of the method was done by Malyugin [49].
He proposed to exchange any (i, j, k)-component in the Hamming code
with an isomorphic (i, j, k)-component and after that switch nonin-
tersecting i and j components. The modification allows to get a great
variety of perfect codes and as a consequence the following lower bound:

Theorem 22. (Malyugin, 1999, see [49].) There are at least

22
n+1

2 −log(n+1) · 22
n−3

4

different perfect binary codes of length n.

A further development was achieved by Krotov [36] again for the
class of perfect codes of ranks not more than n− log(n+1)+2 using si-
multaneously the α-components method and Phelps’s [56] construction
(see also Section 7.3. below).
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Theorem 23. (Krotov, 2000, see [36].) There are at least

22
n+1

2 −log2(n+1) · 32
n−3

4 · 22
n+5

4 −log2(n+1)

(7.1)

different perfect binary codes of length n.

The last bound is better than the other known lower bounds. It is
not difficult to see that Vasil’ev’s [84] and Mollard’s [53] constructions
can be described by the method of α-components. See Section 7.4,
where we show that ”one step” Vasil’ev codes can be represented by
the method of i-components. ”One step” means that the code C(n−1)/2

in Vasil’ev’s construction is any perfect code of length (n−1)/2. For the
”two steps” Vasil’ev’s construction we can take the code C(n−1)/2, as we
did it in Corollary 3, represented again by Vasil’ev’s construction. For
the description of such codes we can use the method of α-components.

Phelps and LeVan [60] presented the perfect code of length 15 which
does not belong to the Hamming switching class. That means it does
not belong to the set of all perfect codes obtained by switchings from the
Hamming code. Malyugin [48] enumerated all perfect codes of length
15 obtained from the Hamming code by simultaneous switchings of
nonintersecting components using different coordinates. The number
of such different codes is 131224432. All these codes are included in
the Hamming switching class. The question of the enumeration of all
perfect codes of length 15 is still open (see also Chapter 3). It is not
even known how many switching classes there are for perfect codes of
length 15.

7.3 Combining construction

Let us consider the combining construction from [38] as one of the most
promising constructions because the particular case of the construction
gives the best lower bound on the number of different perfect binary
codes and allows to get the asymptotic bound on the number of inequiv-
alent perfect binary codes of length n of rank n − log(n + 1) + 2 (see
the end of Section 8.3). The construction can be considered as a com-
bination of switching [53, 8] and concatenation approaches [56, 97, 98].
First we have to define a µ-component as a generalization of the notion
of an α-component.
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Let n = rm, in this section again r and m are powers of two: m = 2p

and r = 2k for any p, k > 2 and let

x = (x11, x12, . . . , x1m, x21, . . . , x2m, . . . , xm1, . . . , xrm)

be any vector from En. The generalized parity function p(x) is defined
like in Mollard’s construction [53] by

p(x) = (σ′1, σ
′
2, . . . , σ

′
m) ∈ Em,

where σ′j =
∑r

i=1 xij.
Let µ ∈ Em. A subset Kµ in En is called a µ-component of the space

En if |Kµ| = 2n−m−log2(n/m), p(x) = µ for any x ∈ Kµ and d(x, x′) ≥ 4
for any different x, x′ ∈ Kµ, here n = rm is a power of two.

Theorem 24. (Combining construction, Krotov, 2000, see [38].) Let
Cm be an extended perfect binary code of length s and Kµ be a µ-
component for any µ ∈ Cm. Then the set

C =
⋃

µ∈Cm

Kµ

is an extended perfect binary code of length n = rm.

As follows from this theorem we have first to define a base code Cm

of length m and for any codeword µ ∈ Cm take a µ-component Kµ,
which construction depends upon the word µ. Three cases to construct
µ-components are presented in [38]. Let us consider one of them, which
gives us the best lower bound on the number of perfect binary codes.

Let us turn to Phelps’s construction, see Section 6.6. Let us consider
the following application of this construction:

Theorem 25. The set

Cn = {(c1|c2| . . . |cm) : ci ∈ Cµi

iji
, µ = (µ1, µ2, . . . , µm) ∈ Cm,

j = (j1, j2, . . . , jm) ∈ B}
is an extended perfect binary code of length n = mr.
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Here Cm is a base code (an extended perfect binary code of length
n), B – r-ary code of cardinality rm−1 with distance 2 and length m,
B ⊂ {1, . . . , r}m (a MDS code). For each coordinate i ∈ {1, . . . , m}
we take r disjoint perfect even weight codes

C0
i1, . . . , C

0
ir

of length r and r disjoint perfect odd weight codes

C1
i1, . . . , C

1
ir

of length r (existence of such partitions see in [71, 14] and also Section
6.2). So, we have the following 2m partitions, m of these partitions for
the m coordinates given by even weight extended perfect binary codes
(these partitions are given in columns):

C0
11, . . . , C0

m1

C0
12, . . . , C0

m2

... . . . ...
C0

1r, . . . , C0
mr

and m partitions (in columns) given by odd weight extended perfect
binary codes:

C1
11, . . . , C1

m1

C1
12, . . . , C1

m2

... . . . ...
C1

1r, . . . , C1
mr

We can write the construction of the code in the folowing way

Cn =
⋃

µ∈Cm

⋃
j∈B

Cµ1

1j1
× . . .× Cµm

mjm
.

It should be noted that in Phelps’s construction only two parti-
tions C0

1 , . . . , C
0
r and C1

1 , . . . , C
1
r are used, first of them for even weight

extended perfect codes, the second one – for odd.
Let for each i ∈ {1, . . . , m} and fixed v = (v1, . . . , vm) ∈ Em, r

disjoint perfect codes Ci1, . . . , Cir of length r be given where the codes
are even weight if vi = 0 and odd weight if vi = 1.
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Theorem 26. The set

Kµ = {(c1|c2| . . . |cm) : ci ∈ Ciji
, j = (j1, j2, . . . , jm) ∈ B} =

⋃
j∈B

C1j1 × . . .× Cmjm .

is a µ-component.

The proof is straightforward.
Since the codes Cij are only used in the construction of the µ-

component and can be chosen independently for each µ, from Theorem
24 and 26 one can get the following construction, which generalizes
Theorem 25.

Let Cm be an extended perfect binary code of length m. For each
µ ∈ Cm let B(µ) be an r-ary code of length m, cardinality rm−1 and
distance 2. Let us take for every µ ∈ Cm and each i ∈ {1, . . . , m} r
disjoint perfect codes Cµ

i1, . . . , C
µ
ir (even weight or odd weight codes if

µi is 0 or 1 respectively).

Theorem 27. The set

Cn =
⋃

µ∈Cm

⋃

j∈B(µ)

Cµ
1j1
× . . .× Cµ

mjm
.

is an extended perfect binary code of length n = mr.

For r = 4 varying the choice of the codes B(µ) (such codes are
in an one-to-one correspondence with (m− 1)-quasigroups of order 4),
Krotov obtained the best lower bound on the number of perfect binary
codes, see Theorem 23.

7.4 Method of i-components

The method of i-components or the method of switching non-
intersecting components by disjoint coordinates is very close to the
method of α-components but different because there are some situations
where we can use i-components approach but can not use α-components
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method. The method of i-components was exploited by different au-
thors, see this section below and the first who introduced the concept
of i-components (in the terminology of disjunctive normal forms) was
Vasil’ev [84, 85]. The method of switching nonintersecting components
allowed Avgustinovich and Solov’eva [6] to construct a class of nonsys-
tematic perfect binary codes of length n for every n = 2k − 1, k ≥ 8.
The problem about the existence of nonsystematic perfect codes was
posed in 1985 by Hergert [33]. A perfect code C of length n is system-
atic if there are n− log(n+1) coordinates such that the code C deleted
in the remaining log(n + 1) coordinates coincides with En−log(n+1).

Proposition 6. Let n = 2k − 1, k ≥ 8. There are n minimal compo-
nents M1, . . . , Mn with minimal cardinalities in the Hamming code Hn

such that the i-th component Mi is an i-component and the distance
between two components Mi and Mj is greater than 4 if i 6= j.

This property allows us to switch every i-component Mi in the i-th
coordinate. Thus we obtain

Theorem 28. (Avgustinovich, Solov’eva 1996, see [6].) The set

C = (Hn \ (
n⋃

i=1

Mi)) ∪ (
n⋃

i=1

(Mi ⊕ i))

is a nonsystematic perfect binary code of length n for every n = 2k −
1, k ≥ 8.

For n ≤ 127 nonsystematic perfect codes were investigated by Phelps
and LeVan [59] and for n = 15 by Romanov [67]. Malyugin [51] proved
the following result:

Theorem 29. ( Malyugin, see [51].) Minimal number of i-components
necessary to switch in the Hamming code in order to get a nonsystem-
atic perfect code is equal to 7 independently of the code length.

There are some other papers devoted to switching construction or
using it, see [27, 58, 66, 68].
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Mi1

Mi2

Mis

i1

i2

is

Mi1+ei1

Mi2+ei2

Mis+eis

Figure 7.3: An illustration to Theorem 28

Let us show that Vasil’ev’s construction is a switching construction.
Consider Vasil’ev’s construction

V n = {(x + y, |x|+ λ(y), x) : x ∈ Ep, y ∈ Cp},

where n = 2p + 1. It is easy to see that the set

Mp+1 = {(x, |x|, x) : x ∈ Ep}

is the (p+1)-component of V n of cardinality 2p and Vasil’ev’s construc-
tion is the switching construction.

Let K(Mp+1) and K(Mp+1 ⊕ ep+1) be neighborhoods of Mp+1 and
Mp+1 ⊕ ep+1 respectively. It is easy to see that

K(Mp+1) = K(Mp+1 ⊕ ep+1).

Therefore Mp+1 is a (p + 1)-component by the definition and the set

(V n \Mp+1) ∪ (Mp+1 ⊕ ep+1)



50 Switching approach

is a perfect code. Analogously

V n \ (
⋃

y∈V p
1

My
p+1)) ∪ (

⋃

y∈V p
1

(My
p+1 ⊕ ep+1)

is a perfect binary code of length n, here V p
1 is a subcode of the code

Cp such that λ(y) = 1 iff y ∈ V p
1 , ep+1 is as earlier a vector of length n

with one only in (p + 1)-th coordinate,

My
p+1 = Mp+1 ⊕ (y,0p+1).

The structure of i-components of a perfect code was investigated in
[5, 80]. It is very complicated and various. We call an i-component
indecomposable if it can not be divided into i-components of smaller
cardinality. The existence of perfect codes with i-components of dif-
ferent cardinalities was established in [5]. In [80] it was proved that
there exists a class of perfect codes of length n − 1 with minimal i-
components of cardinality h2n−h/n for every n = 2m, m > 2 and h = 2p,
where p = 2, . . . , m − 1. The existence of maximal cardinality noni-
somorphic i-components of different perfect codes of length n for all
n = 2m − 1,m > 3 is proved in [80].



Chapter 8

Some properties of perfect
binary codes

8.1 Spectral properties. Part I.

A code is distance-invariant if the number Ai(n) of all codewords at
distance i from a fixed codeword does not depend on the choice of the
codeword.

In 1957 Lloyd [44] and independently in 1959 Shapiro and Slotnik
[69] proved a perfect binary code to be distance-invariant. We are going
to consider some nice theorems due to Shapiro and Slotnik.

Theorem 30. (Shapiro and Slotnik, see [69].) Let C be a perfect
code. Then the number of codewords at distance r from a given codeword
x ∈ C does not depend on the choice of the word x and on the choice
of the code.

Proof. Let us denote the number of codewords at distance k from a
codeword x by Ak. Without loss of generality we can consider x = 0n,
where n is the length of the code C. Let us compose a system of linear
equations for Ak, k = 0, . . . , n. All numbers Ak can be calculated from
the equations.

Let us consider the k-th level En
k in En. By the close packed prop-

erty of the code C all vectors from En
k are partitioned into three subsets:

1) Ak codewords of weight k;

51
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2) vectors, which belong to spheres surrounding all codewords from
En

k−1. There are (n− k + 1)× Ak−1 such vectors;
3) vectors, which belong to spheres with centers in codewords from

En
k+1. There are (k + 1)× Ak+1 such vectors.

So we get the following system of n + 1 linear equations with n + 1
unknown values:

A0 = 1, A1 = A2 = 0,(
n
k

)
= (k + 1)Ak+1 + Ak + (n− k + 1)Ak−1,

k = 2, 3, . . . , n.

It should be noted that negatively indexed Ak are to be interpreted as
zero.

En

Ak+1

Ak

Ak−1

k + 1

n–k+1

k + 1

k

k − 1

Figure 8.1: An illustration to Theorem 30

Using a generating function

A0 + A1t + . . . Ant
n

it is possible to find an explicit form of the numbers Ak, k = 0, 1, . . . , n :

A2k =
1

n + 1

((
n
2k

)
+ (−1)kn

(
(n− 1)/2

k

))
;
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A2k+1 =
1

n + 1

((
n

2k + 1

)
+ (−1)k+1n

(
(n− 1)/2

k

))
.

The proof is done.

Adding the last equation to the previous one, one can get

A2k + A2k+1 =

(
n
2k

)
+

(
n

2k + 1

)

n + 1

and conclude it in the following result:

Corollary 6. A perfect code of length n containing the all-zero vector
has uniform distribution by pairs of neighboring levels En

2k and En
2k+1,

k = 0, . . . , n−1
2

.

Immediately from this theorem we get the following very important
properties of perfect codes.

Corollary 7. For every codeword x ∈ C, where C is a perfect code of
length n, it is true that the compliment vector x⊕1n belongs to the code
C.

This property appeared to be very useful to investigate nontrivial
properties of perfect binary codes, see, for example, sections 8.3, 8.4.

Corollary 8. The number of codewords of weight (n−1)/2 of a perfect
code of length n is equal to

A(n−1)/2 =
1

n + 1

((
n

(n− 1)/2

)
+ n

(
(n− 1)/2
(n− 3)/4

))
.

Theorem 31. (Shapiro and Slotnik, see [69].)The only perfect codes
with distance 7 are the Golay code of length 23 and the trivial code of
length 7.

Proof. If there exists a perfect code of length n, cardinality k and
distance 7 then

2n :

(
1 +

(
n
1

)
+

(
n
2

)
+

(
n
3

))
= 2k
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and therefore

1 +

(
n
1

)
+

(
n
2

)
+

(
n
3

)
= 2r,

where r = n− k. Multiplying by 6 and simplifying the left side factors,
we get

(n2 − n + 6)(n + 1) = 3· 2r+1.

Hence, one or another of the left-hand factors is a multiple of 3.
There are two cases.
1) Assume 3|(n2 − n + 6). Here

n + 1 = 2l, n2 − n + 6 = 3· 2r−l+1,

whence,
(2l − 1)2 − (2l − 1) + 6 = 3· 2r−l+1

and
22l − 3· 2l + 8 = 3· 2r−l+1. (8.1)

If l = 3 we have a trivial code of length n = 7. So l > 3 and n > 7.
From (8.1) we have

23(22l−3 − 3· 2l−3 + 1) = 3· 2r−l+1.

The first factor of the left-hand factors is equivalent to 0 (mod 2), the
second one is equivalent to 1 (mod 2). Analyzing the right-hand factors
we conclude 23 = 2r−1+l and therefore r − 1 + l = 3. Then

n2 − n + 6 = 3· 23,

which contradicts n > 7 as well as n is an integer.
2) Assume 3|(n + 1). Here

n + 1 = 3· 2l, n2 − n + 6 = 2r+l−1,

whence,
(3· 2l − 1)2 − (3· 2l − 1) + 6 = 2r−l+1

and
9· 22l − 9· 2l + 8 = 2r−l+1,
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23(9· 22l−3 − 9· 2l−3 + 1) = 2r−l+1,

9· 22l−3 − 9· 2l−3 + 1 = 2r−l−2,

9· 22l−3 − 9· 2l−3 = 2r−l−2 − 1.

Left hand side is an even number, but at the same time the right hand
side is odd, whence there is only the possibility 2l−3 = 1. So l = 3 and
n + 1 = 3· 23 = 24. This leads to the code of length 23 with distance 7
and completes the proof.

The next theorem will show by a non-constructive elegant way that
the number of perfect codes with distance more than 4 is finite. The
proof of the theorem is a consequence of the following deep result of
Siegel from Number Theory.

Lemma 1. (Siegel) Let f(x) be any polynomial, which takes integer
values when x is an integer. Then unless f(x) is a constant times a
power of a linear polynomial, the largest prime factor of f(n) increases
without limits as n →∞.

Theorem 32. (Shapiro and Slotnik, [69].) If t ≥ 2 then the number of
perfect codes of length n with distance d ≥ 5 is finite.

Proof. To deduce the theorem from Lemma 1 we have to verify that
the polynomial f(x) defined by

f(x) = 1 +

(
x
1

)
+ . . . +

(
n
t

)
(8.2)

is not a power of a linear polynomial if t ≥ 2 (here 1 +

(
x
1

)
+

. . . +

(
n
t

)
is the number of vectors in a sphere of radius t in the

x-dimensional cube Ex). Then according to Lemma 1 and (8.2) the
number f(n) has a prime factor more than 2 for n sufficiently large and
therefore it cannot be 2 and 2n/f(n) 6= 2k for some k, which means
we cannot reach the Hamming bound and there is no perfect code of
length n with distance t.
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The theorem will be proved by contradiction. Suppose

f(x) = a(b + cx)t, (8.3)

where a, b, c are some rational numbers. Let us count f(0) from the
last equation:

f(0) = 1 = abt,

so we may write
f(x) = (1 + r·x)t, (8.4)

where r = c/b is rational.
Substituting x = 1 into (8.3) we get

f(1) = 1 +

(
1
1

)
= 2.

On the other hand from (8.4) we have

f(1) = (1 + r)t.

Then (1 + r)t = 2, so that 1 + r = t
√

2 is rational. This contradiction
establishes the proof of the theorem.

8.2 Upper bound on the number of per-

fect binary codes

There is only an upper bound on the number of different perfect codes
close to a trivial bound, but the proof of this bound is far from trivial.
This bound follows from the following nice property of perfect codes.

Proposition 7. (Avgustinovich, [4].) A perfect binary code of length
n is uniquely determined by its codewords of weight (n− 1)/2.

Proof. As earlier we denote all vectors of weight k by En
k and consider

the set Xn−1
2

= C ∩ En
n−1

2

of all codewords of weight (n − 1)/2 in a

perfect code C containing 0n. First of all it should be noted that if
we know the set Xn−1

2
then according to Corollary 7 the set X n−1

2
is a
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subset of the code C, where X n−1
2

is the set of all compliment vectors

to the set Xn−1
2

.

Let us have at least two extensions of the set Xn−1
2
∪X n−1

2
to perfect

codes:

C = A ∪Xn−1
2
∪X n−1

2
∪ A, (8.5)

C ′ = B ∪Xn−1
2
∪X n−1

2
∪B,

where A 6= B.

A B

X X

X X

A A

n+1
2

n−1
2

C = A
⋃

X
⋃

X
⋃

A C
′
= A

⋃
X

⋃
X

⋃
B

Figure 8.2: An illustration to Proposition 7

It is easy to see that d(A, B) ≥ 3. Using this fact we can get a
perfect code

D = A ∪Xn−1
2
∪X n−1

2
∪B, (8.6)

see Figure 8.2.

From A 6= B we have A 6= B and therefore there exists a vector
y ∈ B such that y /∈ A. From this fact and from (8.5) we get y /∈ A.
But according to Corollary 7 from y ∈ B and (8.6) it follows y ∈ A, a
contradiction. The proof is done.

Using this property one can get the following upper bound on the
number Nn of different perfect codes of length n.



58 Some properties of perfect binary codes

Theorem 33. (Avgustinovich, 1995, see [4].) There are not more
than

Nn ≤ 22n− 3
2 log n+log log(en)

different perfect binary codes of length n.

Proof. From Proposition 7 it is easy to obtain the following upper
bound on the number of different perfect binary codes of length n :

Nn ≤
( |En

(n−1)/2|
|En

(n−1)/2 ∩ Cn|
)

.

Using twice the Stirling formula

nne−n
√

2πne−n ≤ n! ≤ nne1−n
√

2πn

and Corollary 8 we can estimate this bound

Nn ≤
(
|En

(n−1)/2|
An−1

2

)
≤

(
2n/

√
n

2n/n
√

n

)
≤ 22n− 3

2 log n+log log(en)

. (8.7)

The proof is done.

Remarks.

1. Comparing this upper bound with the best lower bound from
Theorem 23 we see the big gap between both bounds.

2. It should be noted that the trivial upper bound is

22n−log n

.

3. Further developing of the results presented in this section see at
the end of Section 8.3.

Exercises.

1. Prove using the Stirling formula the inequality

(
n

(n− 1)/2

)
≤ 2n

√
n

.
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2. Prove using the Stirling formula that the number An−1
2

from

Corollary 8 satisfies the inequality

An−1
2
≤ 2n

n
√

n
.

3. Prove the last inequality in (8.7) using the Stirling formula.

Open problem

Find new upper and lower bounds on the number of different perfect
binary codes of length n ≥ 15.

8.3 Spectral properties. Part II.

A binary code of length n is called distance-regular if for any codewords
x, y and any integers i, j ∈ {1, . . . , n} the number of codewords z such
that d(x, z) = i, d(y, z) = j, does not depend on the choice of x, y but
only depends on d(x, y).

Theorem 34. (See [9].) Among the perfect binary codes with distance
3 only the Hamming codes of length 3 and 7 are distance-regular.

Between these two properties the following interesting metrical prop-
erty of a perfect code introduced in [90] takes place.

A perfect binary code is strongly distance-invariant if the number
of codeword pairs at distance d, where one codeword of the pair is at
distance i from a codeword x and the other one at distance j from x,
depends only on the numbers i, j, d and does not depend on the choice
of x.

Theorem 35. (Vasil’eva, see [90].) All perfect binary codes are strongly
distance-invariant.

A subset F of all vectors in En with fixed n−k coordinates is called
a k-dimensional face.

The following generalization of well known results of Lloyd, Shapiro
and Slotnik (the distance-invariance of perfect codes, see, for example,
Theorem 30), Delsart, Pulatov (every perfect binary code of length n
has uniform distribution in k-dimensional faces of En, k ≥ (n + 1)/2)
is presented in the following theorem:
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Theorem 36. (Vasil’eva, see [87].) The weight distribution of the code-
words of a perfect binary code in any face of En depends only on the
number of the codewords of this face.

The notion of the local spectrum of a perfect binary code is defined
in [89] as the weight spectrum of the subcode of the perfect code in a
face which contains this subcode.

Theorem 37. (Vasil’eva, see [89, 90].) The local spectrum of a perfect
binary code in any face is uniquely determined by the local spectrum of
the code in the orthogonal face.

The notion of a centered characteristic function is introduced in
[88]. Let

vC : En → {0, 1}
be the characteristic function of a perfect binary code C, i. e. vC(x) = 1
iff x ∈ C.

The function
vC(x)− 1/(n + 1)

is called a centered characteristic function of the code C.
The function is considered as a vector of length 2n. The following

two results are presented in [88]. The centered characteristic functions
of all perfect binary codes are eigenvectors of all incidence matrices
of the Hamming associated scheme and, therefore, belong to a certain
eigensubspace of the Euclidean 2n-space. The centered characteristic
function of a perfect binary code can be presented as a linear combina-
tion of centered characteristic functions of a class of equivalent perfect
binary codes.

The notion of a K-centered function as a generalization of the no-
tion of the centered characteristic function is introduced in [13]. A
real-valued function defined on En is called K-centered if the sum of
its values in any sphere of radius 1 equals K. A perfect code char-
acteristic function is the 1-centered function on En for appropriate n
with values from {0, 1} and vice versa. Remind that in 1995 Avgusti-
novich [4] showed that every perfect binary code is uniquely determined
by its codewords of weight (n − 1)/2; see Section 8.2. The following
generalization of the result is obtained for centered functions:
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Theorem 38. ( Avgustinovich S. V., Vasil’eva A.Y., see [13, 21].) The
values of a centered function on all vertices of the n-cube are uniquely
determined by values on the middle level of the n-cube.

The explicit formula is presented.

8.4 Automorphism groups of perfect codes

The automorphism group Aut(C) of a code C of length n consists of all
the isometries of En which transform the code into itself Av

π(C) = C
or π(C) + v = C. It is known that each isometry En is defined by a
mapping

Av
π : x → π(x) + v,

where π is a permutation of the n coordinate positions, and v ∈ En.
Let

Sym(C) = {A0
π : A0

π(C) = C}
denote the permutational automorphism group of the code C, and

Ker(C) = {Av
e : Av

e(C) = C}
the set of all its periods (remind that here 0 is the all-zero vector of
En, e – the identity permutation of length n). It is called the kernel
K(C) of a code C. Since C (see for instance perfect nonlinear binary
Z4-linear codes in [37]) may possess an automorphism Av

π(C) = C such
that π(C) 6= C and v + C 6= C, it is clear that not always

Aut(C) = Sym(C)×Ker(C)

(here and later in this section × denotes semidirect product). This
means that it is not enough to investigate separately Ker(C) and
Sym(C). Obviously for any linear code C, Aut(C) = Sym(C)×Ker(C).

There are not too many papers devoted to the investigation of the
automorphism group of perfect codes. It is well known that for the
Hamming code Hn of length n the permutational automorphism group
is equivalent to GL(log(n + 1), 2) and therefore for the automorphism
group of the Hamming code it holds

Aut(Hn) ∼= GL(log(n + 1), 2)×Hn
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and

|Aut(Hn)| = 2n−log(n+1)N1,

where

N1 = |GL(log2(n + 1), 2)|
= n(n− 1)(n− 22 + 1)(n− 23 + 1) . . . (n− (n− 1)/2).

The first result about the permutational automorphism group of perfect
binary codes was given by Phelps in [57]:

Theorem 39. (Phelps, [57].) Every finite group is isomorphic to the
permutational automorphism group of some perfect code.

Unfortunately this interesting result does not give full information
about the structure of the automorphism group of a perfect code of any
length n = 2m − 1, m > 3. Some research on the full automorphism
group of a perfect code has been done in [10, 47]:

Theorem 40. (Avgustinovich, Solov’eva, [10].) For any n ≥ 255 there
exists a perfect binary code of length n with a trivial automorphism
group of order 2, and this code is full rank nonsystematic.

Theorem 41. (Malyugin, [47].) For any n ≥ 31 there exists a system-
atic perfect binary code of length n with a trivial automorphism group
of order 2.

If a perfect code contains 0n it always contains the all-one vector
of En, see Corollary 7. So the last two theorems show that the lower
bound is achievable.

An upper bound on the order of the automorphism group of a per-
fect binary code was established in [78, 79, 50]. Let us remind that
all codewords of weight 3 of a perfect binary code including 0 define a
Steiner triple system. That is why the automorphism group of a perfect
code is very closely related to the automorphism group of its Steiner
triple system. The automorphism group Aut(STS(n)) of any STS(n)
consists of all the permutations of the set N , which transform STS(n)
into itself.
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Theorem 42. (See [29, 78, 79].) If the order of the automorphism
group of a Steiner triple system of order n is equal to the order of the
full linear group GL(log(n + 1), 2) then it is a Hamming system, and it
is unique up to isomorphism.

The proof in [29] is algebraic, in [78, 79] combinatorial and shorter.
In [78] an upper bound on the order of the automorphism group of any
Steiner system S(t, t + 1, n) was obtained.

It is proved in [78] that

|Aut(C)| = |T (C)| · |Sym(C)|
for a code C, where T (C) is the set of all vectors v ∈ En for which
there exists a permutation πv ∈ Sn such that

πv(C) + v = C.

Here πv is not always from Sym(C).
First the following theorem was proved.

Theorem 43. (Solov’eva, Topalova, [78].) The order of the automor-
phism group of any perfect binary code of length n is not greater than
the order of the automorphism group of the Hamming code of the same
length.

Then next results appeared independently using different approaches.

Theorem 44. (Solov’eva, Topalova, [79].) Any perfect binary code with
an automorphism group of maximal order is equivalent to the Hamming
code of the same length.

Theorem 45. (Malyugin, [50].) The order of the automorphism group
of any nonlinear perfect binary code is at least twice less than the order
of the automorphism group of the Hamming code of the same length.

Analogous results can be extended to Steiner quadruple systems
of order n = 2m and extended perfect binary codes. Remind that a
Steiner quadruple system is a collection of 4-element subsets (blocks) of
N , such that each not ordered 3-element subset of N is contained in
exactly one block.
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Theorem 46. (See [79], [50].) There is a unique Steiner quadruple
system S(3, 4, n) with an automorphism group of the maximal possible
order and it is contained in the extended Hamming code of the same
length.

Theorem 47. (See [79], [50].) Any extended perfect binary code with
an automorphism group of maximal order is equivalent to the extended
Hamming code of the same length.

Open problem

Clarify whether a perfect binary code of length 15 with a trivial
automorphism group exists or not.

8.5 Ranks and kernels problem

The definition of the kernel can also be done in the following way: the
kernel Ker(C) of a code C is defined as the set of all its periods (all
codewords x ∈ C such that x + C = C). The dimension of the kernel
is denoted by k = k(C).

Heden [30] constructed perfect codes of length 15 with kernels of
dimension 1, 2, 3. In 1994 Etzion and Vardy [27] found perfect codes of
length n ≥ 15 of all admissible ranks using switchings of nonintersecting
minimal i-components. The same approach allowed Phelps and LeVan
[58] to establish the existence of a nonlinear perfect code of length
n ≥ 15 with a kernel of dimension k for each k ∈ {1, 2, . . . , n−m− 2},
where n = 2m − 1. See also [67].

In 1998 Etzion and Vardy [28] proposed to clarify which pairs of
numbers (r, k) are attainable as the rank r and kernel dimension k of
some perfect code of length n. It will be mentioned further as the ranks
and kernels problem. Let δ(r) be such minimal number that

2δ(r) − δ(r)− 1 ≥ r − n + log(n + 1).

Denote by U(n, r) the following

U(n, r) = n− log(n + 1)− δ(r).
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Theorem 48. (Etzion and Vardy, 1995, see [28].) For full rank perfect
codes for every n ≥ 2m−1,m > 3, it is true k(C) ≤ U(n, r). The bound
is tight for full rank perfect codes for each n ≥ 210 − 1.

Using the same approach as Etzion and Vardy did in [28] Phelps
and Villanueva [62] established the upper bound of pairs (r, k) for a
perfect code of length n ≥ 15 for not full rank codes and proved that
all such pairs are attainable.

Denote by L(n, r) the following

L(n, r) =

{
2n−r, if r > n− log(n + 1) + 1,

2n−r − 1, if r = n− log(n + 1) + 1.

Theorem 49. (Phelps and Villanueva, 2001, see [62].) The bound
L(n, r) is the exact lower bound of kernel dimension of a perfect code
for length n ≥ 15 and rank r.

For r < 15 perfect codes of length 15 for all possible pairs (r, k)
are given in [61]. For n = 15 full rank perfect codes with any kernel
dimension k, 1 ≤ k ≤ 5 are known, see [30, 54, 28], for k ≥ 6 full rank
perfect codes do not exist [28, 83].

In this section we are going to present the following theorem:

Theorem 50. (Avgustinovich, Heden, Solov’eva, 2002, see [19, 20].)
Let n and r be natural numbers such that n = 2m − 1, m > 10, n −
log(n+1) ≤ r ≤ n. Then for any natural number k such that L(n, r) ≤
k ≤ U(n, r) there exists a perfect code of length n and rank r with kernel
dimension k.

Let us consider the construction. Let Hn be the Hamming code
of length n defined by its parity check matrix with columns given in
lexicographic order. Remind some definitions. A linear subspace R0

i

of the code Hn is a linear span of all vectors of weight 3 with the i-th
coordinate equal to 1, i ∈ {1, . . . , n}. It is called reduced i-component.
For any vector v ∈ Hn a set Rv

i = R0
i + v is called an i-component with

the representative v, see the beginning of Chapter 7.
Let us consider a set of pairs F = {(u1, i1), (u2, i2), ..., (us, is)},

where ut ∈ Hn, it ∈ {1, 2, ..., n}. We call a family F separable if the
following conditions hold:
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1. the set of vectors of length log(n+1) corresponding to the binary
representation of natural numbers i1, i2, ..., is is linearly independent
over GF (2);

2. 0 /∈ Rut
it

, it ∈ {1, 2, ..., n};
3. for all t 6= l it is true that Rut

it
∩Rul

il
= ∅.

The number s of pairs in the family F is the size of the family. A
separable family F is called full rank family if s = log(n + 1). Let
M = {L1, L2, . . . , Ls} be a set of arbitrary linear subspaces of the code
Hn. A family F is called M-separable if in addition to conditions 1 and
2 the following condition is valid

3?. for all t 6= l it holds (Rut
it

+ Lt) ∩ (Rul
il

+ Ll) = ∅.
Let all spaces Li in the set M coincide with some space L. Unless

otherwise stated in this case we will call an M -separable family L-
separable. Let us consider the set

C(F,M) = Hn \
s⋃

t=1

(Rut
it
⊕ Lt) ∪

s⋃
t=1

(Rut
it
⊕ Lt ⊕ eit),

where eit is the vector with one in only the it-th coordinate. Let
K(F,M) =

⋂s
t=1(R

0
it ⊕ Lt). Using the same approach as in [58] the

following fact can be proved:

Theorem 51. Let F be an M-separable family of size s. Then the set
C(F, M) is a perfect code of rank n−log(n+1)+s with kernel K(F, M).

Corollary 9. Let F be an L-separable family of size s. Therefore there
exist perfect codes of length n of rank n− log(n+1)+ l with any kernel
dimension from dim(K(F )) to dim(K(F,L)).

The last theorem shows that to prove Theorem 50 it is necessary to
construct an L-separable family of pairs for appropriate subspaces L.
A basis of the construction is given by the following three propositions.

Proposition 8. For all admissible n > 7 there exist separable families
of any size s, where s = 1, . . . , log(n + 1).

Proposition 9. Let F be a separable family of pairs of size s of the
code H(n−1)/2 and v ∈ H(n−1)/2 \⋃s

t=1 Rut
it

, v /∈ {0,1}. Then the family
F ′ = F ∪ (v, n) is an R0

n-separable family of pairs of size s + 1 of the
code Hn.
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Proposition 10. Let F be an L-separable family of pairs of size s of
the code H(n−1)/2 and v ∈ H(n−1)/2 \ ⋃s

t=1(R
ut
it
⊕ L), v /∈ L. Then the

family F ′ = F ∪ (v, n) is a (R0
n ⊕ L)-separable family of pairs of size

s + 1 of the code Hn.

To prove Theorem 50, it remains to collate Theorem 51 and Propo-
sitions 8–10. Propositions 8–10 and Theorem 51 provide the existence
of perfect codes of any rank s with minimal possible kernel and, respec-
tively, kernel of dimension at least (n − 1)/2. A possibility to choose
any linear subspace of the space L for the set M gives a continuous
variation (adding one with every step) of kernel dimension from the
minimum to the maximum.

In [15] the classification of perfect codes of length n and rank n −
m + 2 is reduced to the description of MDS-codes with distance 2 over
an alphabet with four symbols. It is not difficult to show that if the
rank of a perfect code C is n−m + 1 then C is a Vasil’ev code.

Theorem 52. (See [15].) If the rank is n − m + 2 then a perfect
code of length n for any admissible length n > 7 can be described by a
Hamming code of length (n − 3)/4 and a set of MDS-codes of length
(n − 3)/4 with distance 2 over an alphabet with four symbols using
Phelps’s construction [56].

Krotov and Potapov [41] investigated such MDS-codes, every MDS-
code of length (n + 1) with distance 2 over an alphabet with four sym-
bols is equivalent to n-quasigroup of order 4. They proved that the
asymptotic number of such n-quasigroups is

3n+122n+1

(
1 + O

(
1

3n

))
.

From this bound, Theorem 52 and Theorem 23 one can obtain the
asymptotic estimate for the number of perfect codes of length n and
rank n − m + 2. So using [15] and [41] we have a preclassification of
perfect codes of rank n−m + 2.

Heden [31] has shown the following theorem.



68 Some properties of perfect binary codes

Theorem 53. (Heden, 2002, see [31].) Any perfect code with rank
less than n is equivalent to a Krotov code obtained by the combining
construction (see Theorem 24).

Open problem

Find a solution of the ranks and kernels problem for full rank perfect
codes for pairs (n, k), where

15 < n < 210 − 1, k ∈ {U(n), U(n)− 1}.

8.6 Metrical rigidity

A code C in the n-dimensional vector space En over GF (2) is called
metrically rigid if every isometry I : C → En with respect to the
Hamming metric is extendable to an isometry of the whole space En.
A notion of the metrical rigidity is closely and naturally connected with
the well known in classical geometry notion of a rigidity. Remind that
every isometry of En is defined by a mapping Av

π : x → π(x)+v, where
π is a permutation of coordinates and v ∈ En. A code C is reduced if it
contains the all-zero vector.

The metrical rigidity of the following classes of codes has been es-
tablished in [3, 74]:

Theorem 54. (Avgustinovich, see [3]; Solov’eva, Avgustinovich, Hon-
old, Heise, see [74].) Perfect q-ary codes for q ≥ 2, are metrically rigid
with the exception of the binary Hamming code of length 7 and the
ternary Hamming code of length 4.

Theorem 55. (Solov’eva, Avgustinovich, Honold, Heise, see [74].) The
following codes are metrically rigid:

1) the binary even-weight code of length n with the exception of the
case of n = 4;

2) q-ary (n, n− 1) MDS codes with the exception of several codes of
small length;

3) full constant-weight codes.
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Let N = {1, 2, . . . , n}. A subset D ⊂ En of weight k vectors is
called a 2-(n, k, λ)-design if the number of vectors in D with ones in
the i-th and j-th coordinates is equal to λ for all different i, j ∈ N .

Theorem 56. (Avgistinovich, Solov’eva, see [18]. Any reduced binary
code of length n containing a 2-(n, k, λ)-design is metrically rigid for n
large enough.

The class of such codes includes for sufficiently large code length all
the families of uniformly packed codes satisfying the condition d−ρ ≥ 2,
where d is the code distance and ρ is the covering radius, all primitive
extended BCH-codes and all codes containing t− (n, k, λ)-designs.

Two codes C1, C2 are called weakly isometric if there exists such a
map J : C1 → C2 that the equality d(α, β) = 3, α, β ∈ C1 is true iff
d(J(α), J(β)) = 3. It is clear that isometric codes are weakly isometric.

Theorem 57. (Avgustinovich, see [11].) Any two weakly isometric
perfect binary codes are equivalent.

The result was announced by Avgustinovich in 1994, see [3].
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(Temporary) Concluding remarks

The aim of these Lecture Notes was to introduce the beautiful the-
ory of perfect codes to any reader with a basic background in coding
theory and combinatorics. Of course the selection of the material pre-
sented here reveals the author’s taste and inclinations. We followed the
strong relation with combinatorics (for example, to the fascinating cor-
respondence between perfect binary codes and Steiner triple systems, or
the geometry of the n-dimensional cube), other topics of coding theory,
group theory, graph theory, classical geometry.

The present state of the manuscript is by far not complete, and
there will be more to come, especially about the structure of perfect
codes, about q-ary perfect codes, about a generalization of the results
for codes with parameters different from parameters of perfect codes
(ternary codes, codes with parameters of Reed-Muller codes and so
on).

It should be noted that there are some other interesting and beau-
tiful recent results devoted to perfect codes and related topics such as
classifications of Z4-linear perfect and Hadamard codes [37, 40], results
on perfect codes in distance regular graphs [1], constructions of perfect
ternary constant weight codes [81, 39], results about propelinear perfect
codes, see [64] and others.

I express my deep sense of gratitude to Professor Hyun Kwang Kim
from Com2MaC center, POSTECH, South Korea for inviting me to visit
the center, present 8 lectures on perfect codes and related topics, for his
kind hospitality and for making these lecture notes possible. Special
thanks to the people in Com2MaC center, especially to Sangmok Kim
and his family for making my stay in Pohang very pleasant. I am
very grateful to Svetla Topalova for her kind help, which allowed to
improve the presentation of the text and Jong Yoon Hyun and Natasha
Tokareva, who helped to accompany the text of the lecture notes with
nice figures.
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